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Abstract 

Whether the COVID-19 pandemic has changed fertility patterns is still an open question, as social 
isolation for long periods can impact the number of conceptions in many ways. We combine 
administrative data on all recent births in Brazil with daily data on individual location to estimate the 
relationship between the share of individuals staying close to their homes in each week and the 
number of conceptions in that same week, comparing municipalities with different social isolation 
patterns during the first semester of 2020. We find that conceptions unequivocally decline when 
social isolation increases. The effect is stronger for women who are between 21 and 25 years old 
and more educated, as well as for richer, larger, and more urban municipalities. COVID-19 is likely 
to change fertility across countries depending on the behavior of the population and on the lock-
down measures implemented to fight the pandemic.  

 

Introduction 
 

The Coronavirus disease 2019 (COVID-19) pandemic has significantly impacted several 
dimensions of human populations (1,2). While the main focus of media reports and scientific 
research has been on death tolls and vaccines, speculations have been made about possible 
fertility and birth changes during and after outbreaks. Some analysts have talked about a potential 
“baby boom” caused by the stay-at-home orders, which could lead couples to spend more time 
together and increase sexual activity (3). Moreover, a report by the United Nations predicted that 
the decrease in the availability of family planning services and modern contraceptives could lead 
to millions of unintended pregnancies (4). Others have argued that we should expect a “baby bust”, 
instead, as rising financial instabilities and overall uncertainty would contribute to couples 
abandoning or postponing pregnancy plans. Such a fall in pregnancies was observed during the 
1918 influenza pandemic and the 2008 global financial crisis (5,6).  

The outlook is not clear, and it seems likely that there will be heterogeneous effects, both between 
and within countries. In high-income countries, where women generally have more control over 
their fertility, a reduction in work-life balance, followed by financial struggles caused by the 
economic downturn and restricted access to assisted reproductive technologies, may cause 
conceptions to decrease (7,8). Conversely, in medium and low-income countries, especially in rural 
areas, limited contraceptive methods and increases in poverty rates could lead to rising birth rates.  

Other than socioeconomic disruptions caused by the pandemic, the virus itself may affect fertility. 
Studies have shown that COVID-19 infection may have temporary physiological impacts on both 
female and male fertility, affecting the menstrual cycle and semen quality (9–11) . Additionally, 
there were concerns about potential effects of vaccination on fertility, but recent evidence has 
shown there were no significant adverse effects (12,13).  
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Early in the pandemic, evidence pointing towards a “baby bust” was seen in surveys showing 
revisions in pregnancy plans. Respondents reported postponing or abandoning previous intentions 
to conceive in European countries and in the United States (14,15). Yet, in another survey in the 
US, women reported having more difficulty accessing contraceptives, particularly among those 
most financially affected during the crisis, which could increase risks of unwanted pregnancies (16). 

As preliminary data from the last quarter of 2020 became available, declines in crude birth rates 
were observed in rich countries (17,18). In Europe, this drop was associated with duration of 
lockdowns at the national level (19). Evidence for medium and low-income countries, however, has 
been scarce. One study used data from telephone interviews in four countries in Africa, finding no 
indication of rising pregnancy rates during 2020 (20). Another analyzed data from Moldova and 
found that there were reductions in pregnancy intentions and restrictions to some contraceptive 
methods, though these were largely offset by switches to other readily available methods (21). 
Detailed analyses about possible causal mechanisms (financial instability vs fear of death vs 
lockdown related stress) have been sparse. One study analyzed a few counties in the United States 
and found that declines in birth rates were steeper where there were more infections of COVID-19 
and more pronounced mobility reductions (22). Another showed that social distancing policies in 
Japan were associated with reductions in pregnancies and areas with more rigorous precautions 
had a steeper decline (23). Using an event study and difference-in-differences design with data on 
the United States and Europe, (24) found significant effects of lockdowns on Google searches for 
pregnancy-related term such as pregnancy tests and emergency contraception. Finally, a study 
using a difference-in-differences approach in Australia found that lockdowns had negative impacts 
on women’s fertility intentions  (25). We contribute to this literature by combining administrative 
microdata on all Brazilian births and fetal deaths, which allows us to calculate weekly conception 
numbers by municipality, with municipality-level daily geographical isolation data, to explore the 
impact of social isolation on the number of conceptions.  

Regarding Brazil, previous literature studied the effect of the Zika epidemic in mid 2010s, showing 
that there was a decrease in conceptions probably caused by pregnancy postponement and 
increases in abortions (26). These declines were steeper for more educated and younger women 
(27). Still, there are significant differences between the Zika epidemic and the COVID-19 
pandemic. Importantly, Zika was associated with microcephaly (28) so that one of the reasons for 
pregnancy postponing might have been fear of congenital malformations. This would not be a 
main factor in the current pandemic. In addition, the incidence and scale of the COVID-19 
pandemic was much greater, with consequences spanning several socioeconomic areas. 
Implications for women’s health in particular have been extremely unequal across regions and 
income levels. Conceptions can increase if women’s control over their fertility choices are being 
reduced due to gender violence and mental health complications or if access to contraception is 
restricted (29). Therefore, the extent and direction to which the pandemic might affect 
conceptions is unclear, and evidence for middle and low-income countries has been extremely 
limited. 

In this context, this study aimed to investigate the association between staying at home during the 
pandemic and the number of conceptions in Brazil. We gathered data on all registered births in 
Brazil throughout 2020 and 2021, including date and place of birth, as well as mother’s 
characteristics. The database also informs gestational age at birth in weeks, so we can approximate 
the week of conception. To ensure our data consider the total number of conceptions and not only 
those leading to live births, we also collected data on the number of fetal deaths and estimate 
conception dates for pregnancies that did not lead to live births. We then combine these numbers 
with daily social isolation data by municipality, measured by an aggregate index of geographical 
isolation, and estimate econometric models to assess the effect of stay-at-home guidelines on 
conceptions. 
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Materials and Methods 
Data wrangling and analysis were conducted with R version 4.1.2 (30), with the “tidyverse” (31), 
"estimatr” (32), “stargazer” (33), and “lfe” (34) packages. Moreover, calculations for margin effects 
were conducted with Stata version 15.0 (35) using package “reghdfe” (36). 

Data 
 
We extracted birth data from the Sistema Nacional de Nascidos Vivos - SINASC, which is managed 
by the Brazilian Ministry of Health (specifically, by the Secretaria de Vigilância em Saúde SVS/MS). 
Data for all Brazilian states, from 2012 to 2020, were downloaded from DATASUS, a system used 
by the Ministry of Health to publicize data, and the preliminary 2021 data were from the SVS/MS 
website itself. Files were downloaded as DBC/DBF, which we converted to CSV for proper data 
cleaning and structuring. Each record represents a child born in Brazil, with detailed information 
about health at birth and mother characteristics. The variables we used in the analysis were 
municipality of residence, date of birth, mother's education, gestational age at birth in weeks, the 
number of other children the mother has given birth to, and the mother's age in years. 

We then calculated the estimated date of conception for each birth, by subtracting seven times the 
number of gestation weeks from the date of birth. We deleted observations that had no data for 
birth weight, type of delivery, mother’s education or gestational length. We also excluded 
observations with mother age registered as less than 10 or more than 85 years old, which would 
almost certainly be input errors. All of those excluded observations accounted for ~5% of total 
records. Additionally, we excluded births from three microregions (Fernando de Noronha, Traipu 
and Auriflama) which had too few records. Together, they account for less than 0.01% of the 
Brazilian population.  

In our main statistical analysis, we control for the number of deaths in the municipality week. In 
order to do that, we downloaded data on deaths records in Brazil from the Sistema de Informações 
sobre Mortalidade (SIM), also managed by SVS/MS and published in DATASUS. We extracted 
data on municipality of residence and date of death for deaths in all Brazil from 2015 to 2020. Due 
to underreporting, excess mortality has typically been used to measure mortality in the pandemic, 
instead of confirmed COVID-19 deaths  (37,38). In this context, (39) showed that excess mortality 
was negatively correlated with live birth numbers in Europe. We thus include total deaths and model 
weekly variations controlling for seasonal patterns.  

Importantly, changes in birth patterns might be associated not with pregnancy rates, but with 
variability in fetal mortality and abortions. To account for this, we also obtained data on registered 
fetal deaths, also from SIM (DOFET - Declarações de Óbitos Fetais) and available in DATASUS. 
Again, as data for 2021 is preliminary, it was downloaded from a different source, the Portal 
Brasileiro de Dados Abertos – Base de Registros SIM 2021. We estimated the date of conception 
for those fetuses in the same way as we did with live births.  

To measure social isolation, we used the Social Distancing Index calculated by In Loco, which 
leverages anonymized cellphone locational data from millions of devices across the country and 
calculates, by municipality and date, the share of people who stayed within a 450 radius of their 
houses. The index has been used extensively by the media and government throughout the 
pandemic, correlates adequately with other mobility indices such as Google Mobility and has also 
been used in several scientific publications (40,41).  Other data sources included estimates of 
population in 2020 by municipality from the Instituto Brasileiro de Geografia e Estatística - IBGE 
and GDP per capita by municipality in 2018 (latest available data), also calculated by IBGE. To 
categorize municipalities into urban and rural, we again used IBGE’s classification. 
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Our study has an ecological design and uses only secondary data obtained from publicly available 
datasets, so it is exempt from approval by an institutional review board. Although the isolation index 
dataset uses anonymized individual location data to calculate the indices, it does not pose risks to 
individuals as it does not collect civil information such as name or social security number, and the 
data was aggregated by municipality by the company that collected it and publicized at the 
aggregated level. The birth microdata is also anonymized by the Brazilian Ministry of Health, and 
we aggregated it at municipality/week level, so that it is not possible to identify any individual-level 
information. 

For our main dataset, data were grouped by municipality and week. We defined a week number as 
the number of weeks since December 30th, 2019. Week number 0, therefore, starts on Monday 
Dec 30th, 2019, and ends on Sunday Jan 5 th 2020; week number 1 starts on Monday Jan 6th 2020 
and ends on Sunday Jan 12 th 2020; etc. Our sample includes weeks 5 (starting on Monday, Feb 
2nd) to 29 (starting on Monday, Jul 20th). Even though we have data for births throughout the whole 
year, our isolation data is limited for this time period (February to July) and therefore we are not 
able to analyze other months. Besides calculating total conceptions by municipality and week, we 
also calculated conceptions considering two categories of mother age and mother education: for 
age, we considered four categories corresponding to the quartiles of the age distribution in the 
sample; for education, we considered mothers who have not completed high school vs mothers 
who have completed high school or higher levels of education. This categorization was chosen 
based on the variables provided in the source datasets and in previous research that shows that 
completing high school is a strong determinant of fertility choices (42,43). We also grouped mothers 
in two categories according to the previous number of live children (no previous children vs one or 
more previous children.)  

To group the isolation data, we first excluded municipalities for which there was no isolation data 
available for all days in our dataset (which encompasses February to July). The original dataset 
had data for 4778 municipalities (out of 5570 municipalities in Brazil), exclusion due to missing 
isolation data left us with 3633 and further exclusion of the three microregions mentioned previously 
left us with 3628 municipalities. Then, we calculated mean isolation by week for each municipality. 
Our main regression models, however, include only municipalities with more than ten births per 
week, to avoid abnormal variations in the change of log births. For robustness, we also created a 
dataset grouped by microregion instead of municipalities, as well as a dataset grouped by 
municipality and month instead of weeks to reduce measurement errors due to a very small number 
of births. A first look at the data also involved analyzing grouped data by state (Brazil has 27 states 
including the capital’s federal unit). To group by microregion and state, we weighted isolation data 
by each municipality’s population.  

Statistical analysis 

We started with descriptive analysis, grouping the data by state and calculating changes in isolation 
between months to check whether these numbers were correlated with conceptions. We calculated 
changes in conceptions adjusting for seasonal effects by using double-differences, i.e., comparing 
changes in (log) conceptions over two consecutive months in 2020 with the same two months in 
2019.  

Many studies have applied statistical and mathematical models to different settings amid the 
COVID-19 pandemic. Transmission and mortality, for example, have typically been analyzed with 
SIR-Poisson or Bayesian modelling (44,45) . The same approach has been used to model the 
effects of lockdowns and social distancing (46) . To assess causal effects, correcting for time-
invariant factors in small units of analysis, high-dimensional fixed effect models have been widely 
used (47,48). Following this line of studies, in our main analysis, we aggregate all data by week 
and municipality and estimate Multi-Way Fixed-Effect models to assess the effect of social 
distancing on conceptions, starting with the following equation: 
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𝑙𝑛 (𝐶𝑜𝑛𝑐𝑒𝑝𝑡,𝑖) =  𝛼𝑖 +  𝛽 𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑡,𝑖  +  𝛾𝑙𝑛(𝐷𝑒𝑎𝑡ℎ𝑠𝑡,𝑖)  +   𝛿𝑡 + 𝜃𝑖 𝑡 +  𝜀𝑡,𝑖, 

where 𝛿𝑡  are week fixed-effects that control for seasonal effects and the advance of the covid 

pandemic throughout Brazil, 𝛼𝑖  are municipality fixed-effects that control for unobserved 
municipality-specific characteristics that are fixed over our sample period, such as population, GDP, 
location, poverty and other factors, and 𝐷𝑒𝑎𝑡ℎ𝑠𝑡,𝑖 represents the number of deaths in the 

municipality/week, which could also play an important role in determining conceptions. The term 
𝜃𝑖 𝑡 allows for different municipality-specific time trends (t) over time and 𝜀𝑡,𝑖is a random error. 

We take first-differences across successive weeks to eliminate the fixed effects, obtaining the 
equation that will be taken to the data: 

𝛥𝑙𝑛 (𝐶𝑜𝑛𝑐𝑒𝑝𝑡,𝑖) =  𝛽 𝛥𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑡,𝑖  +  𝛾𝛥𝑙𝑛(𝐷𝑒𝑎𝑡ℎ𝑠𝑡,𝑖) +  𝛿𝑡 + 𝜃𝑖 + 𝑓𝑖𝑚 +  𝛥𝜀𝑡,𝑖, 

In the main specification we also include interactions between municipality and months fixed-effects 
(𝑓𝑖𝑚 ), so that the variation used to estimate the effect of isolation comes solely across weeks of the 
same month, to control for seasonality effects in the change in conceptions. 

Regressions are weighted by population size and are adjusted for clusters at the municipality levels 
to allow for heteroskedasticity and serial correlation within municipalities over time. We carry out 
several robustness tests, such as controlling for municipality-specific trends over time, aggregating 
the data to the microregion level and using months instead of weeks to allow for measurement 
errors in the computation of births. We compute heterogeneous effects by education, age, number 
of previous kids, municipality size and poverty levels (S1 and S2 tables). We conduct placebo tests 
by regressing conceptions in each year between 2012 and 2019 on the 2020 week isolation rates 
to examine whether spurious correlations could be driving our results (S1 Fig). In the main analysis 
we exclude municipalities with less than 10 conceptions per week, but we also carry out robustness 
tests with different exclusion criteria, as well as using different model specifications, such as using 
absolute values instead of logs and estimating unweighted regressions (S3 Table). Finally, we also 
aggregate data by different weekdays to ensure our results are not driven by random chance due 
to our grouping criteria (S4 Table). All tests confirm the robustness of our results.  

Results 
 

Figure 1A shows that there is a clear decline in the total number of conceptions in 2020 relative to 
previous years, even after considering seasonal trends. Conceptions are calculated as daily 
averages by month to account for different numbers of days in each month. The colored lines show 
two-year pairs averages (except for 2020) and the grey band shows minimum and maximum values 
in each year from 2012 to 2019. Though fertility in Brazil had been declining prior to the pandemic 
(49), Fig 1A shows that the number of conceptions in January and February 2020 were still within 
the range of previous years. However, starting in March 2020, the number of conceptions dropped 
below the range of previous years for all months. 

Figure 1B shows changes in State-level conceptions rates adjusted for seasonal effects by using 
double-differences, i.e., comparing changes in (log) conceptions over two consecutive months in 
2020 with the same two months in 2019. Monthly conceptions vary because human fertility is 
markedly seasonal, mainly due to physiological factors associated with temperature and 
photoperiod (50). The figure shows that changes in conceptions vary substantially across States, 
with a marked decline in conceptions in April, especially in regions more affected by Covid-19 
outbreaks, such as in the Amazon State, which saw a devastating outbreak in its capital (Manaus) 
in April (40). Interestingly, the figure shows an increase in conceptions in these regions after May, 
suggesting a reversion back to the mean which coincides with a decrease in isolation rates (Fig 
2A). 
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Figure 1. 2020 Conceptions in Brazil. (A) Total conceptions in Brazil by year. Conceptions are 
calculated as daily averages by month to account for different numbers of days in each month. 
Colored lines show two-year pairs averages (except for 2020) and the grey band shows minimum 
and maximum values from 2012 to 2019. (B) Double differences in conceptions by state in 2020. 
Rates are calculated as double differences in log conceptions, by subtracting conceptions in each 
month by the number in the previous month, and then taking the difference of this variation and the 
same variation in the previous year. This controls for seasonal changes that occur every year. The 
variation shown is thus calculated as:(𝑙𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑚,2020 − 𝑙𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑚−1,2020)  − (𝑙𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑚,2019 −

𝑙𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑚−1,2019) for m = March, April, May, June, and July.  

Figure 1A 

 

 

 

 

 

 

 

 

 

 

 

Figure 1B 
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We then combined the data on conceptions with information on social isolation, measured by the 
share of people who stayed close to their houses, disaggregated by municipality and day. Fig 2A 
displays the behavior of isolation over time, comparing more educated with less educated 
individuals, showing that isolation increased more among the more educated. A simple correlation 
analysis with data aggregated by month and state displayed in Fig 2B shows a negative relationship 
between seasonally adjusted variation in conception rates and changes in isolation. 

Figure 2. Isolation in Brazil. (A) Figure plots daily mean isolation index calculated as a weighted 
average of each municipality’s index, weighted by population. The index considers the share of 
people who stayed within a 450m radius to their houses on each day. Municipalities are grouped 
as rich or poor according to the median value of their GDP per capita, (B) Scatterplots of the 
monthly variation in isolation for each Brazilian state with respect to the previous month (X-axis) 
and double differences in conceptions, as defined in Fig 1B (Y-axis). R is the Pearson correlation 
coefficient. 

 

Figure 2A 
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Figure 2B 
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Table 1 reports the main results from our Fixed Effects models. Municipalities with less than ten 
births per week are excluded. Column (1) only controls for week fixed-effects, and the estimated 
coefficient is negative and statistically significant. Column (2) controls for the changes in the 
number of deaths, showing that mortality does not seem to impact the number of conceptions. 
Column (3) includes municipality fixed-effects to control for trends in conceptions over the months 
and the results do not change qualitatively. Column (4), our preferred specification, includes month 
fixed effects and municipality-month interactions, to capture variations within each month and 
municipality. The results are significant and even greater in magnitude. In column (5), we 
aggregated the data to the microregion level, as there are many municipalities with few conceptions 
in a week. The impact remains very similar. When examining the relationship at the 
municipality/month level in column (6), to allow for measurement errors, we again obtain similar 
results.  

Table 1. Effect of isolation on conceptions.   

 

 Δ ln Conceptions 

 (1) (2) (3) (4) (5) (6) 

Δ Isolation -0.385*** -0.372*** -0.372*** -0.500*** -0.526*** -1.372*** 

 (0.133) (0.133) (0.133) (0.166) (0.141) (0.052) 

Δ ln Deaths 
 

-0.007 -0.007 -0.007 0.0002 0.051*** 

 

 
(0.008) (0.008) (0.009) (0.009) (0.014) 

Two Way Fixed Effects:   Y Y Y  

Month interactions:    Y Y  

Group by microregion:     Y  

Group by month:      Y 

Observations 10,944 10,944 10,944 10,944 11,400 12,050 

R2 0.032 0.032 0.034 0.101 0.119 0.125 

 

 
Each regression (column) estimates the effect of social distancing on the number of conceptions. 
Columns (1)-(4) are grouped by week and municipality, column (5) is grouped by week and 
microregion and column (6) is grouped by month and municipality. Variables are included as first 
differences between successive weeks or months (Conceptions and Deaths are log-differences). 
All regressions are weighted by municipality or microregion population. Columns (1) and (2) 
include week fixed effects; columns (3) and (4) include week and municipality fixed effects; 
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column (5) includes week and microregion fixed effects; column (6) includes municipality and 
microregion fixed effects. Columns (4) and (5) include municipality-month (or microregion-month) 
interactions and month fixed effects. Standard errors are reported in parentheses and clustered at 
the municipality or microregion level.  Significance: ***p < 0.01; **p < 0.05, *p < 0.1. 

 

Figure 3A illustrates the main effects obtained in column (4), showing estimates and 95% 
confidence intervals (CI). It shows that when isolation decreases by 5 pp. the number of 
conceptions increases by 3.1% (CI 95% 1.3%-4.9%; effect size 0.10). An increase in isolation of 9 
pp, on the other hand, decreases conceptions by 3.9% (CI 95% 6.6%-1.1%; effect size 0.18). 

Figures 3B and 3C shed light on the different mechanisms that may be driving these results, by 
showing effects for different groups of municipalities and women’s characteristics of an increase in 
isolation of 9pp. When comparing richer and poorer municipalities, Fig 3B shows that the effect is 
only statistically significant in the richer ones, where the number of conceptions decreases by 3.9% 
(CI 95% 7.1-0.8%; effect size 0.18), in urban cities, with a similar decrease of 4.0% (CI 95% 6.8%-
1.1%; effect size 0.18) and in bigger cities, decreasing by 4.2% (CI 95% 7.5%-0.9%; effect size 
0.23). Meanwhile, the results are not significant for those municipalities that are smaller (CI 95% -
9.2% – +1.6%), rural (CI 95% -21.6% – +5.0%), and poorer (CI 95% -9.9% – +2.5%), 

Figure 3. Marginal and heterogeneous effects of isolation on conceptions. The figure 
illustrates our main results based on Column (4) of Table 1, showing linear predictions of the effect 
of isolation on conceptions for the fitted model in our main specification (A) and heterogenous 
effects when considering different groups of either municipalities (B) or women (C). 95% C.I’s are 
also included. Shown in the heterogeneous effects plots are marginal effects for a 9 p.p change in 
isolation. Groups are defined as follows, with the total number of observations for each regression 
in parentheses: richer (poorer)  municipalities - annual 2018 GDP per capita above (below) the 
median of BRL 17,427 (N = 8,352 and N = 2,592); urban/rural follows IBGE’s classification (N = 
10,560 and N = 384); larger (smaller) - population above (below) 120,000 people (N =  6,336 and 
N = 4,608); more (less) educated are women who completed (did not complete) high school (N = 
10,944 and N =  10,748); no kids vs 1 kid or more considers the number of previous births to live 
children the mother has given (N = 10,888 and N  = 10,944); age categories are grouped according 
to the quartiles of the distribution of mothers in the sample (N = 10,587, N = 10,910, N = 10,937, 
and N = 10,777 respectively). Full regression results are shown in S1 and S2 tables.  
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Moreover, the more educated women (who completed high school) are most affected, with a 
decrease of 4.0% (CI 95% 7.3%-0.8%; effect size 0.16), whereas for less educated women the 
estimated effect is not statistically different from zero (CI 95% -9.1% – +2.3%). Women in the 
second quartile of the age distribution (aged between 21 and 25) are more affected, with a decrease 
in conceptions of 9.7% (CI 95% 15.0%-4.4%; effect size 0.20) when the share of people staying 
close to their homes increased by 9pp. Meanwhile, the effect is not statistically significant among 
women in the other age groups (aged < 21 : CI 95% -10.2% – +5.1%; aged 26-32 : CI 95% -7.0% 
– +3.0%; aged > 32 : CI 95% -5.6% – +5.2%;). Finally, the effect is slightly larger for women who 
had already given birth to live children previously at 5.3% (CI 95% 9.6%-1.1%; effect size 0.18) 
while it is not significant for women who did not have previous children (CI 95% -6.0% – +3.9%). 
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Discussion  
 
Our results show that there is a robust negative relationship between the share of people isolated 
and the number of conceptions during the COVID-19 pandemic in Brazil. The effect is stronger for 
younger and more educated women, as well as for richer, larger, and more urbanized 
municipalities. This result is in line with what was observed during the Zika epidemic in Brazil 
(26,27), and with theories about potential heterogeneous effects of isolation on pregnancy behavior 
amid the COVID-19 pandemic.  

It has been argued that a fertility decline would be more likely in high income regions due to a 
worsening of the work-life balance, rising financial struggles, and reduced access to assisted 
reproductive technologies. Additionally, the lack of outsourced childcare imposes more burden on 
parents since children are always at home, which could also lower conceptions rates.(7) In poorer 
areas, the impacts could go in the opposite direction, as restricted access to contraceptive methods 
would lead to increases in unintended pregnancies, and rising inequality and poverty levels could 
represent setbacks in the long term reductions in fertility that have been associated with 
development in the past decades (7). Teenage pregnancies could rise in these areas as well, due 
to prolonged school closures (51). Although we are not able to pin down the exact reason behind 
the fertility changes during stay-at-home periods, our findings support these theoretical predictions, 
and shed light on what the main drivers of these observations might be.  

First, it seems that most potential increases in fertility during the pandemic would be due to 
unintended pregnancies. Indeed, in the UK unintended pregnancies almost doubled in 2020, mainly 
due to restricted access to contraception (52). The heterogeneities we observe also support this 
conclusion, as we find that the fertility reductions were larger for more educated women. It has 
been also argued that economic shocks are more likely to affect younger women’s pregnancy 
decisions, as they have more fertile time left to make up for postponed childbearing (53). Therefore, 
the group most likely to reduce planned pregnancies during the social isolation period would be 
those women who still have some fertile years remaining but are not in their teenage years, which 
are more prone to unintended pregnancies. In line with these predictions, the largest effect was 
observed among women aged 21 to 25 years old, representing the second quartile of the age 
distribution in our sample. This suggests that a significant portion of the decline in conceptions 
witnessed in Brazil is likely attributable to planned pregnancies. 

The decision to postpone childbearing during the pandemic could also be caused by fear of 
infection. Mothers might fear getting ill during pregnancy and have to go to crowded hospitals, 
where the risk of contamination is higher, or that the newborn might contract the virus right after 
labor. Although there have been reports of such concerns in surveys with pregnant women, they 
have also responded being worried about changes in maternity services, such as availability of 
midwifes and restrictions on partners’ attendance at birth (54,55). Since the number of weekly 
deaths in each municipality is not significant in our statistical models, it seems that fear of 
contracting the virus itself is not a main factor in fertility changes. Instead, the heterogeneities we 
observe suggest that the main reason driving this reduction is the increase in overall uncertainty 
and financial instability leading to postponement of pregnancies.  

Rising unemployment is associated with fertility reductions, but financial concerns are not the only 
reason why shutdowns could reduce pregnancy intentions (56). The psychological burden of 
isolation increases stress and anxiety which can negatively impact fertility choices (57).  The weekly 
granularity of our data could suggest that the immediate financial consequences of shutdowns are 
not as significant as overall stress and concerns regarding the potential duration and extension of 
the lockdown measures. That is, weekly changes in isolation patterns have more immediate 
consequences in anxiety and stress, whereas unemployment might not fluctuate as much due to 
fixed costs and labor contracts (58). Moreover, educated women have access to more information 
during the pandemic and thus might be more susceptible to such fears and stress, as opposed to 
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financial concerns, especially since they are more likely to be able to work from home without losing 
any income. Therefore, our findings suggest that the main drivers of the reduction in fertility are 
increases in stress and overall uncertainty that lead young, educated mothers to postpone planned 
pregnancies. 

Interestingly, (25) found opposite results in Australia: lockdowns had negative impacts on fertility 
intentions, but these effects were more pronounced among older and less educated women. This 
may be explained for several reasons, such as large differences between the two countries, 
particularly considering that there were stronger lockdown policies in Australia. Moreover, the 
outcome they measured is fertility plans, not actual births. Especially considering that Brazil’s 
unequal reality has impacts on women health and fertility (59), an increase in unwanted 
pregnancies among less educated women in Brazil could have offset any reductions in planned 
pregnancies. This shows that regions that have distinct socioeconomic and cultural profiles had 
different effects on fertility, which points to a need for further research.   

It remains an open question, however, whether these reductions will have a long-term impact on 
fertility changes in Brazil and worldwide. Since the number of conceptions increase again when 
isolation decreases, these effects alone are unlikely to cause long-term fertility changes in Brazil. 
Yet, social distancing was only one of the many ways in which the pandemic affected society, which 
could also have impacted fertility. Moreover, it is possible that this was more pronounced during 
the first wave in the beginning of 2020, when fear and uncertainty was highest, and might not have 
been as intense in following outbreaks. Still, even as vaccination advanced early in 2021, Brazil 
suffered a severe third wave of COVID- 19 and the Brazilian Health Ministry asked women, 
particularly younger ones, to postpone pregnancies when possible (60). 

One potential limitation of our study is sampling bias, since we do not have data on every 
municipality in the country. However, we include data for all 27 Brazilian states, which have very 
different sociodemographic characteristics, and we test several sampling strategies to alleviate this 
concern. In our main specification, we exclude municipalities in which there are weeks with 0 deaths 
or less than 10 conceptions. Therefore, our main sample represents 456 municipalities (and we 
have data for 24 weeks, thus N = 10,944 in Table 1), which account for about 62% of the total 
Brazilian population. When we group by microregion, we keep 475 microregions (out of 558 in the 
country), accounting for over 95% of the country’s population. Finally, when grouping by 
municipality and month, we keep 2,410 municipalities (times 5 months, N = 12,050), accounting for 
~88% of the population.  To ensure our results are not driven by these arbitrary criteria, we carry 
out robustness tests with different exclusion criteria and different model specifications, and all tests 
confirm our results.  

Additionally, our recent data are preliminary, which could also bias results. However, the Ministry 
of Health continuously receives birth information from State and municipality governments 
throughout the year and updates its databases. Although the microdata are only consolidated and 
released twice a year, there is a system that continuously keeps track of the total number of 
registered births as they are updated (61). Comparing our preliminary data with the most recent 
numbers posted on this webpage, there is no difference for all months in 2020, and differences 
smaller than 2%, 3% and 7% for the first three months of 2021 respectively. This could, however, 
still cause small differences in our results if the missing data are not randomly distributed across 
municipalities and weeks. A related potential problem is that there might also be measurement 
errors in the reported gestation weeks which we use to estimate conception dates, as well as in 
other reported information such as mother’s age and education. The robustness tests that we carry 
out by grouping observations by microregion and month help alleviate these concerns regarding 
measurement error and outdated data.  

External validity might be another concern, both spatially and temporally. We only use data that 
refer to the first months on the pandemic, and Brazil might have specific cultural characteristics that 
lead to unique fertility patterns. Further studies should address cross-country heterogeneous 
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effects to study implications for population trends worldwide, as well as continue investigating these 
effects to assess whether any future waves will have different consequences.  

 

Conclusions 

We combined administrative data on births and fetal deaths with daily geographical isolation data 
to assess the effects of social distancing on the number of conceptions in Brazil. Using high 
dimensional fixed effects models, we found a robust negative relationship between the share of 
people isolated and the number of conceptions during the COVID-19 pandemic in Brazil. The effect 
is stronger for  women between 21 and 25 years old and more educated, as well as for richer, 
larger, and more urbanized municipalities.  

The main drivers of the reduction in fertility appear to be increases in stress and overall uncertainty 
that lead young, educated mothers to postpone planned pregnancies. However, detailed analyses 
of the mechanisms are needed. Future research could explore different study designs that can 
provide robust evidence regarding the causal mechanisms behind the relationship between 
isolation and fertility, such as the role of stress, anxiety, and uncertainty in shaping pregnancy 
decisions. Moreover, it remains an open question whether these reductions will have a long-term 
impact on fertility changes in Brazil and worldwide, and whether other aspects of the COVID-19 
pandemic also affected fertility.  

Our findings have important implications for policymakers and healthcare providers. It highlights 
the need to take fertility into account in situations not immediately related to reproductive health. 
This relates to the need to improve access to contraception and reproductive health services, 
especially in poorer areas where restricted access to contraceptive methods can lead to increases 
in unintended pregnancies.  
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Supporting Information 

S1 Table. Heterogeneous effects of isolation on conceptions for different municipality 

groups.   

 

 Δ ln Conceptions 

 Poorer Richer Larger Smaller Urban Rural 

 (1) (2) (3) (4) (5) (6) 

Δ Isolation -0.498 -0.508*** -0.539*** -0.491 -0.516*** -1.037 

 (0.370) (0.188) (0.196) (0.322) (0.170) (0.776) 

Δ ln Deaths -0.040** 0.004 -0.011 -0.003 -0.005 -0.052 

 (0.017) (0.010) (0.013) (0.012) (0.009) (0.034) 

Observations 
2,592 8,352 6,336 4,608 10,560 384 

R2 0.108 0.103 0.110 0.089 0.101 0.183 

       

Each regression (column) estimates the effect of social distancing on the number of conceptions 
in a subsample of municipalities. Variables are included as first differences between successive 
weeks or months (Conceptions and Deaths are log-differences). Groups are defined as follows: 
richer (poorer)  municipalities - annual 2018 GDP per capita above (below) BRL 17,427; 
urban/rural follows IBGE’s classification; larger (smaller) - population above (below) 120,000 
people. All regressions are weighted by municipality population and include month, week and 
municipality fixed effects and municipality-month interactions. Standard errors are reported in 
parentheses and clustered at the municipality level. Significance: ***p < 0.01; **p < 0.05,  *p < 
0.1. 
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S2 Table. Heterogeneous effects of isolation on conceptions for different women groups.  

Heterogeneous effects 

 

 Δ ln Conceptions 

  

 Less Educ More Educ Previous kids No kids Aged < 21 Aged 21-25 Aged 26-32 Aged > 32 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

Δ Isolation -0.435 -0.521*** -0.670*** -0.172 -0.332 -1.196*** -0.281 -0.074 

 (0.344) (0.194) (0.248) (0.293) (0.460) (0.318) (0.301) (0.322) 

         

Δ ln Deaths 0.015 -0.013 -0.008 -0.014 0.003 -0.014 -0.024 0.014 

 (0.020) (0.010) (0.011) (0.013) (0.020) (0.018) (0.015) (0.017) 

         
 

Observations 10,779 10,944 10,944 10,894 10,619 10,912 10,937 10,781 

R2 0.078 0.095 0.087 0.088 0.087 0.074 0.079 0.084 

 

Note: *p**p***p<0.01 

 

Each regression (column) estimates the effect of social distancing on the number of conceptions 
for a group of women. Variables are included as first differences between successive weeks or 
months (Conceptions and Deaths are log-differences). Groups are defined as follows: more (less) 
educated are women who completed (did not complete) high school; no kids vs previous kids 
considers the number of previous births to live children the mother has given; age groups are 
divided according to the quantiles in the sample . All regressions are weighted by municipality 
population and include month, week and municipality fixed effects and municipality-month 
interactions. Standard errors are reported in parentheses and clustered at the municipality level. 
The number of observations reported might not match the numbers mentioned in the caption for 
Figure 3 due to the exclusion of singleton observations for the margin calculations.  Significance: 
***p < 0.01; **p < 0.05,  *p < 0.1. 
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S3 Table. Alternative model specifications.  

 Δ ln Conceptions 
  
 Baseline   No log No filter Filter 0 Filter 20 

 (1) (2) (3) (4) (5) (6) (7) 

Δ Isolation -0.500*** -0.507** -0.310* -0.151 -0.393*** -0.339** -0.599*** 

 (0.166) (0.215) (0.178) (0.117) (0.118) (0.143) (0.190) 
        

Δ ln Deaths 
-0.007 -0.008 -0.008 

 
0.003 0.001 -0.012 

 (0.009) (0.009) (0.009) 
 

(0.004) (0.006) (0.012) 
        

Δ Deaths 
   

-0.011 
   

 
   

(0.007) 
   

         

Weighted: Y 
  

Y Y Y Y 

Month 
dummies: 

Y Y 
 

Y Y Y Y 

Observations 
10,944 10,944 10,944 10,944 60,826 28,296 6,048 

R2 0.101 0.089 0.023 0.994 0.125 0.082 0.114 
 

 

 Each regression (column) estimates the effect of social distancing on the number of conceptions. 

Variables are included as first differences between successive weeks (Conceptions and Deaths 

are log-differences, except in column (4)). Columns (1)-(4) exclude municipalities with 0 deaths or 

less than 10 conceptions per week. Column (5) includes all municipalities for which we have data. 

Column (6) excludes municipalities with 0 deaths or conceptions per week. Column (7) excludes 

municipalities with 0 deaths or  less than 20 conceptions per week. Weighted regressions are 

weighted by municipality population. Standard errors are reported in parentheses and clustered at 

the municipality level.  Significance: ***p < 0.01; **p < 0.05,  *p < 0.1. 
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S4 Table. Aggregation by different weekdays.  

 

 

 

Each regression (column) estimates the effect of social distancing on the number of conceptions 

aggregating daily data by different weekdays. Column (1) is the baseline specification, and 

aggregates data weekly starting on Monday Feb 3rd 2020. Column (2) aggregates data starting 

on Tuesday Feb 4th 2020, Column (3) on Wednesday Feb 5th 2020 etc. Variables are included 

as first differences between successive weeks (Conceptions and Deaths are log-differences). 

Regressions are weighted by municipality population and include month, week and municipality 

fixed effects and municipality-month interactions. Standard errors are reported in parentheses 

and clustered at the municipality level.  Significance: ***p < 0.01; **p < 0.05,  *p < 0.1. 

 

 

 

 

 

 
 

 Δ ln Conceptions 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

 (1) (2) (3) (4) (5) (6) (7) 

Δ Isolation -0.500*** -0.603*** -0.454** -0.328* -0.401** -0.390** -0.413*** 

 (0.166) (0.168) (0.180) (0.187) (0.168) (0.154) (0.156) 

Δ ln Deaths 
-0.007 -0.012 -0.009 -0.002 -0.001 -0.009 -0.004 

 (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) 

Observations 
10,944 11,016 10,872 10,920 10,968 10,968 11,016 

R2 0.101 0.101 0.103 0.117 0.109 0.107 0.100 
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S1 Figure. Placebo tests for several years. Figure shows coefficients and 95% CI’s for the 

effect of social isolation on conceptions when using conception data for different years (placebo 

regressions). All regressions follow the main specification of column (4) of Table 1, such that the 

last data point on the chart (2020) represents our main specification. Variables are included as 

first differences between successive weeks (Conceptions and Deaths are log-differences). All 

regressions are weighted by municipality population and standard errors are clustered at the 

municipality level. 

 

 

 

 

 

 


